
Delivering Performance-Portable Stencil
Computations on CPUs and GPUs Using Bricks

Tuowen Zhao∗, Samuel Williams†, Mary Hall∗, Hans Johansen†
∗School of Computing, University of Utah

Email: {ztuowen,mhall}@cs.utah.edu
†Computational Research Division, Lawrence Berkeley National Laboratory

Email: {swwilliams,hjohansen}@lbl.gov

Abstract—Achieving high performance on stencil computations
poses a number of challenges on modern architectures. The opti-
mization strategy varies significantly across architectures, types
of stencils, and types of applications. The standard approach to
adapting stencil computations to different architectures, used by
both compilers and application programmers, is through the use
of iteration space tiling, whereby the data footprint of the com-
putation and its computation partitioning are adjusted to match
the memory hierarchy and available parallelism of different
platforms. In this paper, we explore an alternative performance
portability strategy for stencils, a data layout library for stencils
called bricks, that adapts data footprint and parallelism through
fine-grained data blocking. Bricks are designed to exploit the
inherent multi-dimensional spatial locality of stencils, facilitating
improved code generation that can adapt to CPUs or GPUs,
and reducing pressure on the memory system. We demonstrate
that bricks are performance-portable across CPU and GPU
architectures and afford performance advantages over various
tiling strategies, particularly for modern multi-stencil and high-
order stencil computations. For a range of stencil computations,
we achieve high performance on both the Intel Knights Landing
(Xeon Phi) and Skylake (Xeon) CPUs as well as the NVIDIA
P100 (Pascal) GPU delivering up to a 5× speedup against tiled
code.

Index Terms—stencil, performance portability, data layout,
Roofline, GPU, KNL, Skylake

I. INTRODUCTION

Stencil computations are widely used in scientific applica-
tions to solve partial differential equations using the finite
difference or finite volume methods, where the derivative
at each point in space is calculated as a weighted sum of
neighboring point values (a “stencil”).

The optimizations required to achieve high performance on
stencil computations are greatly affected by a stencil’s order of
accuracy. Low-order discretizations result in smaller stencils
that have limited data reuse, are typically bound by mem-
ory bandwidth, and thus underutilize the compute capability
afforded by manycore, wide vector, and GPU architectures.
Much of the prior work in this field has been based on
lower order stencils and has thus focused on techniques to
reduce data movement [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], and some of these even seek to optimize in
the time domain (“2.5D”) to achieve more FLOPS per byte
moved from memory. Recognizing that processor architectures
are becoming more compute-intensive [13], computational
scientists are increasingly turning to high-order schemes that

perform more computation per point (more compute intensive)
but can attain equal error with larger grid spacings (smaller
arrays and thus less total data movement). Although high-
order stencils inevitably result in higher arithmetic intensity,
they place higher pressure on the register file, cache, TLBs,
and inter-process communication. As such, optimizations that
eliminate redundant loads/stores and computation have been
developed [14], [15], [16].

The optimization strategy also varies significantly across
architectures and based on application context (e.g., multi-
stencils). In practice, a high-performance stencil must in-
corporate architecture-specific optimizations to: (1) reduce
data movement at multiple levels of the memory hierarchy
(registers, caches, TLBs); (2) exploit parallelism at multiple
levels (across domains, nested threading, and fine-grain SIMD
parallelization); and (3) avoid redundant loads/stores and com-
putation for stencils that exhibit high arithmetic intensity.

A desirable goal is to achieve performance portability
of applications that incorporate complex stencils, whereby
a source code can be expressed at a high level that rep-
resents the computation, and then automatically mapped to
architecture-specific implementations for differing target ar-
chitectures. Many previous works achieves this through the
use of a domain-specific compiler that automatically generates
architecture-specific code from a stylized stencil specification,
where a subset of these support both CPU and GPU architec-
tures [17], [18], [19], [20], [21], [22], [23].

Our work could be thought of as providing an embedded
domain-specific language (“eDSL”) implementation, but it has
two distinguishing features over prior work. First, the central
underlying abstraction for achieving performance portability of
complex stencil computations is a data layout library called
bricks that decomposes a stencil’s grid domain into small,
fixed-size multi-dimensional subdomains, an approach to fine-
grain data blocking [24], [25], [26]. Although the elements
within each brick are stored contiguously in memory, the
bricks comprising a subdomain need not be stored in the typi-
cal i-major order. Rather, physical ordering is implementation-
specific and logically neighboring bricks are represented by
an adjacency list. This flexible data layout makes it possible
for brick code to adapt automatically to different architec-
tures and application contexts simply by adjusting the data
footprint using autotuning. As compared to tiling approaches,

1



(a) 2D (b) 3D (c) 6D

Fig. 1: Different spatial tiling schemes used in the comparison on CPUs. Sizes for each dimension of the rectangular 3D region
are tuned. Appendix B contains the code with OpenMP and Intel Compiler pragmas.

the use of bricks provides a number of benefits on stencils
including improved memory hierarchy and TLB utilization,
accelerated data copies, and improved instruction-level paral-
lelism. Bricks are related to earlier fine-grained data blocking
approaches [24], [25], [26], but this is the first work that
combines support for both CPUs and GPUs.

In summary, the key contribution of this paper is the exten-
sive measurements that demonstrate brick as an abstraction
for memory hierarchy optimization, vectorization, threaded
parallelism and the role of the brick data layout in achieving
performance portability across CPUs and GPUs. Across a
broad range of stencil computations, we achieve high perfor-
mance for both the Intel Knights Landing (Xeon Phi) and
Skylake (Xeon) CPUs as well as the NVIDIA P100 (Pascal)
GPU sometimes significantly outperforming tiled code.

II. ARCHITECTURE-SPECIFIC ADJUSTMENT OF DATA
FOOTPRINT: TILING VS. BRICKS

From an architecture perspective, as stated previously, per-
formance of stencil computations is driven by a number of
factors including data movement through the memory system,
including bandwidth requirements and TLB locality, thread-
level parallelism and vectorization. Here, we examine how
loop structure and code generation can synergize with archi-
tecture to minimize the impact of each of these.

Naively, a typical 3D stencil computation walks through
memory in a unit-stride fashion (inner i−loop is unit-stride).
This code will only perform well on hardware platforms that
can cache a working set proportional to the product of stencil
diameter dia and the square of the problem dimension (i.e.,
N2). Further, the hardware must hide memory latency when
presented with a number of data streams corresponding to
the square of the stencil diameter (i.e., dia2); e.g., dia is 3,
representing +1, 0, and −1 in the case of the 27-point stencil.
The separate dia2 streams arise from the 2D projection of the
stencil onto the j-k plane (the plane normal to the streaming
axis). The hardware must also maintain at least dia2 page
entries in the TLB. Failure on any one of these aspects can
increase data movement or decrease effective bandwidth.

Regarding fine-grain parallelism, both SIMD ISAs on CPUs
and memory coalescing on GPUs inexorably lead both archi-

tectures to operate on chunks of points in the unit-stride. These
units of work are mapped to vectors on CPUs and warps on
GPUs. How these units of work stream through the global
problem determines cache locality, data movement, latency
hiding, and bandwidth.

Modern CPU architectures use hardware stream prefetchers
to hide memory latency and maximize memory bandwidth.
To make effective use of a stream prefetcher, each core must
present a few (often less than 32) unit-stride address streams
to memory, which result in sequences of cache misses. To
avoid costly TLB misses, these streams should run for at
least a TLB page (512 doubles on the Intel KNL Xeon
Phi). On GPU architectures, memory latency is hidden with
massive thread parallelism. Nevertheless, TLB locality remains
important although typical GPU page sizes are much larger
and L1 TLBs are shared among warps. On the NVIDIA Tesla
P100, the L1 TLB is shared across a Texture Processing
Cluster (TPC) that consists of two SMs, and the L2 is shared
across the all TPCs [27].

To ensure that the working set is less than cache capacity,
thereby ensuring compulsory cache misses dominate capacity
cache misses, 3D loops representing stencil computations are
typically tiled to create small working sets. For example, tiling
by N/2 in the i- and j-dimensions reduces the cache working
set size by 4× (reuse distance). Smaller tiles generally produce
smaller working sets, but there is a lower limit based on the
stencil diameter. Unfortunately, tiling in the i−dimension is
anathema to the demands of stream prefetchers on CPUs and
is thus rarely employed (with the consequence of increased
cache requirements). Instead, a more typical 2D tiling in the
j- and k-dimensions is widely used for CPUs, with the i-
dimension vectorized, as in Figure 1(a). An improvement on
this scheme is the 3D tiling scheme of Figures 1(b), due to
Rivera et al. [28]. This version improves reuse if N is large,
and supports nested parallelism, which is desirable for larger
numbers of cores. Conversely, memory coalescing and massive
thread parallelism on GPUs often incentivizes tiling in the
i−dimension as well (ignoring TLB effects); a common GPU
3D tiling strategy is shown in Figure 2(a.

Although higher stencil diameters attain high-order nu-

2




	Introduction
	Architecture-Specific Adjustment of Data Footprint: Tiling vs. Bricks
	Bricks as Aggregate Unit of Parallel Work
	Brick Library Overview
	Experiments
	Intel Xeon Phi Knights Landing
	Intel Xeon Skylake Gold
	NVIDIA P100 Pascal GPU
	Performance Portability

	Related Work
	Conclusions and Future Work
	References
	Appendix: Tiling implementations
	Kernel example
	KNL & Xeon implementations
	GPU implementations


